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ABSTRACT

Two-temperature thermal conductivity coefficient κ and electron-ion coupling parameter α are obtained using
Boltzmann kinetic equation in the relaxation time approximation. These coefficients are necessary for the
quantitative description of the two-temperature state with hot electrons Te � Ti created as result of absorption
of femtosecond laser pulse. Simple, noble, and transition metals are considered. An influence of d-band electrons,
which play a significant role, has been evaluated for two latter groups of metals.
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1. INTRODUCTION

There is a long list of technologically important applications based on femtosecond (fs) lasers. They are LIFT,
laser pinning, laser colorizing, laser surface structuring, PLD, MAPLE, biomedical applications, and so on∗.
Those applications are connected with micro machining and with moderate energy depositions into target -
absorbed fluences Fabs are in the range 20-1000 mJ/cm2. In this range interatomic forces and cohesive properties
are significant. This is an area of material research sciences. Another range of applications, just mentioned for
completeness, is based on high intensities regimes from 1016 to 1018 W/cm2 and even higher - to 1021 W/cm2

- a limit achieved at modern petawatt laser facilities. Those high field applications are: plasma plume with highly
charged ions; Kα X-ray sources; hard Bremsstrahlung X- and γ -ray sources; plasma mirror and HHG (high
harmonics generation); electron, proton, 12C, and other ions acceleration to ∼ 0.1-1 GeV. Another directions of
recent developments on fs and ps laser-matter interaction are connected with very high repetition rates ∼ 100
MHz; with studies of plasmonic effects on rough surfaces†; and with delivery of a pulse on a workpiece by robotic
system equipped with a fiber laser device.

A heart of micro machining technologies is a two-temperature (2T) stage Te � Ti created by absorption of
energy by electron subsystem. Subsequent thermal and mechanical stages follow the 2T stage. Striking is that
the existence of laser induced 2T states1 was proposed many years before the first fs laser-matter experiments.2–4

Experiments2–4 have been conducted at small absorbed fluences Fabs - targets remain in solid state. For fs
micro machinery the metal has to be molten or even ablated; melting threshold Fm is below ablation threshold
Fabl for short laser pulses; Fabs|abl ∼ 50 − 200 mJ/cm2 for different metals. Maximum pressures and elec-
tron temperatures for those energy depositions are 10 − 50 GPa and 1 − 3 eV. Below the kinetic coefficients
will be calculated for this energy range. To consider ablation, the hydrodynamical effects should be included.
Corresponding system of equations is

ρ(x0, t)
∂x(x0, t)
∂x0

= ρ0, ρ0 ∂u

∂t
= −∂P (x0, t)

∂x0
,

∂x(x0, t)
∂t

= u(x0, t), (1)

Further author information: (Send correspondence to N.A.I.)
N.A.I.: E-mail: nailinogamov@gmail.com, Telephone/fax: +7 495 702 9317
∗LIFT, PLD, MAPLE are abbreviations: laser induced forward transfer, pulsed laser deposition, and matrix assisted

pulsed laser evaporation; see introductional descriptions in Wikipedia
†Plasmons are absent in case of well polished surface and in case of excitation by X-ray light.
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∂x0
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∂t

=
ρ0

ρ
α · (Te − Ti)− Pi

∂u

∂x0
, Q =

Fabs√
π τL δ

exp
(
− t

2

τ2
L

)
exp

(
−x
δ

)
θ(x). (3)

Expressions (1-3) correspond to conservation laws for mass, momentum, and energy together with necessary
definitions of Lagrangian trajectory x(x0, t), Lagrangian coordinate is x0, x(x0, t = −∞) = x0, an axis x is
perpendicular to the plane surface; spatially one-dimensional case is considered. Q is an energy source; duration
of pump laser pulse is τL, skin depth is δ. Time is counted from arrival of the laser pulse maximum, while
the origin of spatial coordinate x is placed on an initial position of a frontal surface of film; θ(x) = 1, x > 0,
θ(x) = 0, x < 0; initially metal locates at the right side x > 0 relative to initial position of a surface.

Thermodynamic functions Ee(ρ, Te, Ti), Ei(ρ, Te, Ti), P (ρ, Te, Ti), Pe(ρ, Te, Ti), Pi(ρ, Te, Ti) (2T-EOS,
equation of state) and kinetic coefficients κ and α are needed5–7 to solve system (1-3) of 2T hydrodynamics
(2T-HD). Expression for pressures may be omitted in the case without motion x(x0, t) ≡ x0. As was said, in
this paper we will focus on coefficients κ and α. Description of 2T-EOS will be given elsewhere. Some results
about 2T-EOS are presented in paper.8 We use one-parabolic approximation of electron spectrum for simple
(one-band) metals, and two-parabolic approximation for noble and transition metals, where two bands (s and
d) exist. This is an effective description, it allows us to consider interaction as collisions between particles with
effective masses meff . DFT (density functional theory) simulations were used to calculate band structure and
to find meff and edges of bands. Significant complication of calculations is connected with an upper edge of a
d-band; s-band continues to infinity. We separate total density of electron states (DOS) g into partial DOS for
the s- and d-bands (gs and gd) to define masses meff of s- and d-electrons. The paper9 presents approach
when collision integrals are calculated without approximation of dispersion relations by effective masses meff .
In9 total DOS g = gs + gd is used, similar to paper.10 It is not possible to separate s- and d-bands in this
approach, see comparisons and discussion in paper.6

2. BAND STRUCTURE ACCORDING TO DFT AND ITS APPROXIMATION

Calculations of spectra is based on DFT simulations performed using VASP code.11 Example of simulations in
case of copper is shown in Fig. 1. The code allows to separate s,p- and d-bands with satisfactory accuracy. Table
1 presents parameters of two-parabolic approximation of the DFT DOS spectra.6 Two upper bands (s,p and d -
3d104s1) of Cu are quantized in the DFT approximation. The bands below those valence bands are described by
the PAW LDA pseudopotential with a plane-wave cutoff 500 eV, 21*21*21 k-points and 25 electron bands. The
bottom bands are separated by a wide gap ∆ > 50 eV from the 3d104s1 shells. Therefore an approximation
with a PAW LDA pseudopotential is applicable in our range of electron temperatures Te � ∆. Pseudopotential
Cu-pv is taken from the VASP library is used to estimate value ∆. The Cu-pv potential includes a 3p-shell.

Table. 1. Parameters of two-parabolic approximation of normal density, cold DFT DOS. Those
values minimize an average square deviation between DFT DOS and two-parabolic spectra

Metal εs, eV ε1, eV ε2, eV zs zd ms, me md, me

Al -11.06 - - 3 - 1.05 -

Au -8.33 -7.18 -1.83 1.5 9.5 0.87 4.64

Cu -10.02 -5.59 -1.65 1.75 9.25 1.02 7.85

Fe -9.4 -5.5 0.77 1 7 0.75 4.68

Ni -8.8 -5.0 0.17 1.5 8.5 1.10 6.15

Pt -10 -7.5 0.2 1.5 8.5 0.78 3.31

Ta -8 -4.6 1 2 3 1.05 2.39
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Figure 1. Left panel. Total g and partial gs, gd DOS of cold, normal density copper. Right panel. Comparison of a total
DOS with its two-parabolic approximation g = gs + gd; gi = (

√
2/π2)m

3/2
i /nat/~3√ε− εi; i = s or d, nat is an atomic

concentration, εi is εs for s-electrons, and ε1 for d-electrons; εs and ε1 are the bottom edges for s- and d-electrons,
resp. It is suggested that s-band exist at ε > εs, while the d-band occupies a range ε1 < ε < ε2.

Copper in our calculations is considered as a fcc crystal with a lattice period 0.35208 nm at normal density
V/V0 = 1, V = 1/ρ. In a point V0 on a V -axis the calculated total pressure changes a sign. Influence of 3D
isotropic expansion or compression of cold crystal onto total DOS is studied. We consider isotropic deformations
from V/V0 = 0.5 to V/V0 = 2. Results are shown in Fig. 2 (left). Total DOS for every density in Fig. 2 (left)
is plotted against a Fermi level εF (V ;Te = 0) for Cu defined by equation:∫ B

A

g(ε;V ;Te = 0)dε = 11, A = εs(V ;Te = 0), B = εF (V ;Te = 0), (4)

specific for this particular density. A definition of Fermi energy is generalized for arbitrary temperatures Te :∫ B

A

g(ε;V ;Te)dε = 11, A = εs(V ;Te), B = εF (V ;Te), (5)

since total DOS g(ε; ρ, Te) is temperature depended. Equation defining chemical potential µ(ρ, Te) is∫ B

A

f g(ε;V ;Te)dε = 11, A = εs(V ;Te), B = µ(V ;Te), f = {1 + exp[(ε− µ)/kBTe]}−1, (6)

where f is Fermi distribution function. Of course, roots εF (V ;Te) and µ(V ;Te) of equations (5) and (6)
differs. Those roots coincide at zero temperature Te = 0 : εF (ρ, Te = 0) ≡ µ(ρ, Te = 0). In the equations (4-6)
we use εs as a bottom limit of an integration range since the edge εs is less than the edge ε1, see Table 1.
We see that cold spectra in Fig. 2 (left) varies with density, see also.12,13 A d-band becomes more narrow with
stretching. But even at the highest considered here stretching V = 2V0 a cold copper remains metal - there is
no gap at a Fermi level.

Changes of total g and partial gs, gd DOS under variation of electron temperature Te are investigated, see
Fig. 2 (right) and Figs. 3. A range of electron temperatures is from 1 kK to 55 kK. Similar researches but
without partial DOS have been performed in papers.13–16 The bottom edge of spectrum εs is defined by the
edge of the s-band. It is insensitive to increase of electron temperature, see Fig. 2 (right) and Fig. 3 (right). But
the d-band is influenced by temperature Te, see Figs. 4. The bottom ε1 and the upper ε2 edges are shifted
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Figure 2. Left panel. Deformation of total electron spectra with variation of density of cold Cu. We call cold Cu
(” Te = 0 ”) the case with low temperature Te = 1 kK. It is approximately the same as the case Te = 0. An absorption
cutoff εF (V, Te = 0)− ε2(V, Te = 0) becomes larger as density increases (a shift into UV side). Right panel. Deformation
of total electron spectra with variation of electron temperature Te of normal density Cu. We see that the bottom edge
εs is uninfluenced (!) by heating of electrons. This is better seen in Fig. 3 (right) below.
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Figure 3. Left panel. Variation of a d-band gd(ε, Te) with temperature Te. Right panel. Variation of a s-band gs(ε, Te)
with temperature Te. The spectra deform while the left edge εs remains unchanged!
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Figure 4. Left panel. Shrinking of d-band as temperature Te increases. Width of d-band ∆d(ρ, Te) = ε2− ε1 as function
of density and temperature Te is plotted. A width ∆d increases at fixed Te when Cu becomes denser (V/V0 becomes
smaller). Variations of ρ (±4%) and Te (1-55 kK) cover a range typical for 2T stage and fluences Fabs of the order of
ablation threshold. Corresponding pressure changes are from -6 GPa to 8 GPa in this ±4% interval of 3D isotropic spatial
deformations. Middle panel. Temperature dependencies of integrals z̃i(ρ, Te) =

∫ b

a
gi(ρ, Te)dε characterizing capacity of

partial bands; here i = s or d, as = εs(ρ, Te), bs = εF (ρ, Te) according to definition (5), ad = ε1(ρ, Te), bd = ε2(ρ, Te).
Those integrals are taken over ranges corresponding to a part of s-band and for whole d-band. They characterize density
and temperature Te depended modifications of partial spectra. Density modifications ±4% are negligible - there are
three curves marked ”s”, they correspond to three values of compression V/V0 = 0.96, 1, 1.04. We see that in a scale of
picture those three curves, plotted by lines of different thickness and color, merge into one curve. Right panel. A bottom
of the d-band ε1 descends as temperature Te grows, see Fig. 3 (left). While a bottom of s-band is insensitive to electron
temperature increase, see Fig. 3 (right). Therefore an energy interval between those bottoms, plotted here, drops down as
temperature Te increases. We see that density and temperature variations during 2T stage moderately deform electron
spectra obtained thanks to DFT. Hence, a two-parabolic approximation of the DFT DOS also changes moderately during
2T stage. This is a base for using of the two-parabolic DOS taken at zero electron temperature Te = 0 in our calculations
of kinetic coefficients below.

down, and width ε2 − ε1 shrinks, see Figs. 4. A middle part of the s-band in Fig. 3 (right) changes with Te,
perhaps as result of hybridization with d-electrons and changes in the d-shell.

Isotropic deformations keep a symmetry of a lattice. A fcc cubic cell containing four atoms is used in DFT
calculations. A cubic cell fulfills 3D periodic boundary conditions. VASP11 calculations of DOS is performed
in two stages (we follow here to kind advice given to us by V.V. Stegailov). On the first stage the charge
density is obtained for a smearing parameter in a Fermi-Dirac distribution corresponding to the chosen electron
temperature Te. At the second stage the fixed charge density, obtained at the first stage, is used for not self-
consistent calculation of DOS. The second stage calculations are performed using tetrahedron method with
Bloechl corrections. Thermodynamic quantities (total energy and pressure) are taken from the first stage.
Total DOS, obtained at the second stage, depending on Te and V/V0, is decomposed onto separate partial
contributions from s- and d-bands. The results of such decomposition for cold, normal density V/V0 = 1 Cu is
shown in Fig. 1 (left). Decomposition for elevated temperatures Te is presented in Figs. 3.

As was said in captions to Fig. 4, in the range of compressions V/V0 = 0.96 − 1.04, characteristic for 2T
stage, variations of parameters of the two-parabolic approximation (εi, zi and effective masses, see Table 1)
are minimal. Increase of temperature Te up to several eV is more significant, but corresponding changes are
also moderate (see Fig. 4) in case of noble metals, when ε2 is negative and d-band is located below the zero
temperature Fermi level (4). Significant changes with increase of Te take place in transition metals (ε2 > 0),
especially in nickel and platinum where a value ε2 is small, and density of d-states at Fermi level (4) is very
large, see.7 In next Section influence of variation of the two-parabolic parameters due to changes in temperature
Te is estimated in case of copper.

3. THERMODYNAMICS OF COPPER IN TWO-TEMPERATURE STATE

Heating of electron subsystem significantly influences thermodynamic characteristics. E.g., pressure increases
from zero value at fixed normal density as temperature Te increases from a room temperature value 300 K;
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Figure 5. Left panel. The bottom curve corresponds to a filling level εF (Te) (5) taken directly from VASP simulations at
different temperatures Te. The integral (5) gives a level where total DOS accumulates number of states which equals to
11. The level εF (Te) descends down since a total DOS g(ε, Te) is shifted down as temperature Te increases, see Fig. 2
(right). Chemical potential demonstrates opposite behavior. If DOS g(ε) decreases around Fermi level εF (ρ, Te = 0) for
higher values ε then function µ(Te) increases with temperature in the temperature range is of the order of several eV.
For large Te the function µ(Te) decreases for any DOS since degeneracy effects become small. There is an interplay of
small positive and large negative gradients ∂g/∂ε around the level εF (ρ, Te = 0). In small vicinity the gradient ∂g/∂ε
may be positive, while in the wider vicinity the strong drop of DOS at the edge ε2 of a d-band becomes important.
Mainly this drop defines the rising behavior of a function µ(Te). In our case with Cu, this drop is more important than
the effect connected with the shift down of DOS g(ε, Te) in Fig. 2 (right) as Te increases. Right panel. Heating of
electrons rises pressure of 2T solid copper. Classical dependence (red curve) with a theoretical value γ significantly
underestimate pressure since contribution to pressure as a result of liberation of electrons from a d-band is not included.
Value γ = 71 J m−3 K−2 corresponds to small temperatures Te when a d-band is insignificant.

normal density is defined at 300 K. Dependence of chemical potential µ(Te) is important for calculations of
transport coefficients (electrical and thermal conductivities σ, κ) and coupling parameter α, see eqs. (2,3).
Therefore here we shortly present results of our calculations concerning 2T equation of state. Functions µ(ρ, Te)
are shown in Fig. 5 (left). We suppose that ions are fixed in their lattice positions in our DFT electron
temperature dependent calculations. Fig. 5 (left) illustrates differences between different methods of calculation
of chemical potential. The curve µ(V/V0 = 1, Te) marked ” g(Te) ” is found by solving Eq. (6) with temperature
dependent DOS g(ε;V = V0, Te) shown in Fig. 2 (right). While the curve µ(V/V0 = 1, Te) Fig. 5 (left) marked
” g(Te = 0) ” is found by solving Eq. (6) with a DOS g(ε;V = V0, Te = 0) corresponding to zero temperature
(”cold spectrum”). The same calculation with a cold spectrum has been made in paper.10 This is the curve
”Lin et al., 2008” in Fig. 5 (left). It agrees well with our calculation (curve ” g(Te = 0) ”). Difference between
the curves ” g(Te) ” and ” g(Te = 0) ” in Fig. 5 (left) means that temperature deformations of electron spectra
of Cu are considerable, see also discussion around Fig. 4.

Dependencies of energy and pressure are shown in Figs. 5 (right) and 6. In Fig. 6 (left) functions p and E
are presented. A ratio p/E for the curves shown in Fig. 6 (left) is ≈ 0.8 with ± variations ≈ 5% near an
average value in the chosen range of temperatures Te . The ratio is significantly less than Gruneisen parameter
for metals (≈ 2) and higher than classical value 2/3 corresponding to Fermi gas. There is small influence of
compression on dependence of energy on temperature Te, see Fig. 6 (left). Shift of minimum of the dependence
E(ρ, Te) for our density variations (δρ/ρ) ± 4% is very small, because the minimum corresponds to the point
where pressure is zero and therefore variations of energy near minimum are variations of the second order (δρ/ρ)2.
It is interesting that the volume energy density shown in Fig. 6 (left) depends on compression in the opposite
direction in comparison with changes of pressure with compression - compressed state has larger pressure but
slightly smaller energy.

In Fig. 6 (middle) the single-particle energies defined by single-particle spectrum, particle occupation num-
bers, and chemical potential are compared with energy taken directly from VASP simulation. There is double
counting of electron-electron electrostatic energy included into single-particle spectrum. There is a strong shift
down of a d-band with increase of electron temperature Te, see illustration in Fig. 2 (right). This shift is so
strong that the single-particle energies begin to decrease (!) with increase of temperature Te. Therefore, of
course, data obtained in the DFT approximation at elevated temperatures Te should be treated with caution.
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Copper. In Mie-Gruneisen approximation the increase of energy due to heating of electron subsystem at fixed volume is
represented by thermal contribution. There is a sum of two terms in Mie-Gruneisen approximation. They are a cold curve
and a thermal contribution. We call the second term an electron thermal contribution since energy grows as result of
heating of electrons while ions remain cold. Middle panel. Copper. Comparison of volume densities of energy calculated in
three different ways: (i)

∫∞
es
εf [ε, µ1(Te), Te]g(ε, Te = 0)dε, (ii)

∫∞
es
εf [ε, µ2(Te), Te]g(ε, Te)dε, and (iii) are values taken

from VASP; here µ1 and µ2 correspond to chemical potentials calculated based on cold DOS g(ε, 0) or based on the
temperature dependent DOS g(ε, Te), resp.; see in this respect Figs. 2 (right) and 5 (left). In Ref.,10 marked as ”Lin
et al., 2008” here, the method (i) is used. The direct sums of single-particle energies weighted by the DOS and Fermi
distribution are compared here with the internal energy taken from VASP simulation. There is a double counting of
electron-electron electrostatic energy when calculating these direct sums, so they aren’t true internal energy. Right panel.
Removal of degeneracy and increase of heat capacity of copper as temperature Te grows. In a gas limit an electron heat
capacity is 11(3/2)kB = 137 · 105 J m−3 K−1.

It is interesting that in spite of double counting of electron-electron Coulomb interaction energy the energy based
on cold single-particle spectrum is nicely correlated with VASP energies (agreement between the upper three
curves in Fig. 6, middle).

4. ELECTRON-ION COUPLING PARAMETER

In our approach the calculations of electron-phonon coupling α for d-band metals are based on Lindhard
approximation for dielectric permittivity in expression for Coulomb interaction operator, see the paper6 and
references given in this paper. For illustration the dependencies α(Te) are shown in Figs. 7. They weakly
depend from ion temperature Ti if this temperature is above Debye temperature. For tantalum values of
electron-phonon coupling are almost independent from temperature Te. For other metals these dependencies
behave monotonously. If the right edge of a d-band ε2 is positive (higher than µ(Te = 0), see Table 1) then
function α(Te) decreases as temperature Te grows. Metals with a negative edge ε2 < 0 demonstrate opposite
dependence, comp. Figs. 7 (left) and (right).

Fig. 7 (middle) is plotted to show an influence of variation of electron spectra with temperature Te on
coupling. Fig. 4 gives information concerning an amplitude of temperature dependencies of the two-parabolic
parameters on Te. Coupling is much less in case of noble metals in comparison with transition metals with
small edge energy ε2 when density of states is high on a Fermi surface (compare the left versus middle and
right panels in Fig. 7). In Fig. 7 (right) the dependence of electron-phonon coupling from electron temperature
for gold is shown. Case of gold is similar to the case of Cu (Fig. 7 middle). Noble metals behave qualitatively
different from transition metals like Ni, Pt, and Fe. In noble metals the d-band contribution αd increases
with temperature, while in transition metals it goes down when temperature Te increases. Roughly coupling
is inversely proportional to ion mass. Energy transfer to ion subsystem through s-electrons dominates in case
of noble metal at relatively small temperatures. This is clear from Fig. 7 (right). But a d-band introduces
a main contribution to e-i energy transfer when d-electrons are presented in the window on an energy axis
where degeneracy is thermally removed. Outside the temperature range Te ∼ ε2 for transition metals the
d-band contributions are in the order of magnitude the same for different metals. Let us mention that recent
experiments17 seems give smaller values (than shown in Fig. 7 right) ≈ 0.22 · 1017 W m−3 K−1 for coupling
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Figure 7. Left panel. Strong dependence of coefficient α(Te) on temperature Te in case of transition metals with small
positive value of the edge energy ε2, when d-band and s-band are mixed at the Fermi surface. Compare with similar results
obtained recently7 for resistivity of such metals in 2T state. Here the case of Fe is shown. Our approach allows to separate
contributions of different bands into e-i coupling. We see that contribution of s-band is negligible in comparison with
contribution from a d-band. Dashed line presents dependence taken from site http://www.faculty.virginia.edu/CompMat/
Middle panel. Dependencies α(Te) for Cu and αs(Te) for Fe. There are five curves here. They correspond to: (i)
calculations according to model6 with parameters of a two-parabolic approximation taken from a cold DOS spectrum
g(ε, 0) (they are presented in Table 1). (ii) The same model but now for the first time we include dependence of the
two-parabolic parameters on temperature Te. This is the curve g(ε, Te). In this connection we have to say that Fig.
7 (left) for Fe is plotted for the case of a cold spectrum. (iii) Green dashed dependence α(Te) for Cu are taken from
the cited above site virginia.edu/CompMat/ (iv) Blue squares give a partial dependence αs(Te) for the temperature
dependent parameters g(ε, Te). (v) Blue curve presents s-i coupling αs(Te) for Fe. It is taken from Fig. 7 (left). We see
that an energy transfer rate through s-band is in the order of magnitude the same for Cu and Fe. The coupling αs(Te)
weakly depends on Te. Right panel. Partial αs, αd and total α = αs + αd coupling parameters for gold.

parameter of gold at elevated temperatures Te ∼ 2 eV. Variation of values α for Au is discussed in paper.6 For
smaller effective masses the values of our e-i coupling parameter drops down to values ≈ 0.5 · 1017 W m−3 K−1

at temperatures Te ∼ 2 eV.

5. TWO-TEMPERATURE ELECTRON HEAT CONDUCTIVITY

Fig. 8 (left) shows dependence of 2T heat conductivity coefficient κ(ρ, Te, Ti) of copper on temperatures Te
and Ti. Our model6 and two-parabolic parameters listed in Table 1 are used for calculations of two curves
shown by continuous lines. Rather steep linear growth of conductivity κ at relatively small temperatures Te is
connected with increase of electron heat capacity with temperature Te due to partial removal of degeneracy, see
Fig. 6 (right). Electron-ion collision frequency νei is fixed since ion temperature Ti is constant along the curve
κ(Te) during this steep growth‡, while the electron-electron collision frequency νee is less than νei up to the
end of this piece of rather steep growth of conductivity. This growth ends when frequency νee growing with Te
overcomes constant νei. At small temperatures Ti even a maximum appears at the dependence of coefficient κ
on Te. At elevated temperatures Ti the steep growth decreases and the maximum is smeared out. Increase of
frequency νee with temperature Te can not exceed the increase of heat capacity with temperature Te, therefore
growth of coefficient κ(Te) continues but with smaller slope. We see that at elevated electron temperatures the
coefficient κ(Te) greatly exceeds its room temperature value. This is one of the two reasons§ why a depth of
heated layer dT is several times larger than a skin depth δ.

Phenomenological expression ”5/4” cited in caption to Fig. 8 (left) is

κ = C (θ2e + 0.16)5/4(θ2e + 0.44)/
√
θ2e + 0.092/(θ2e + βθi),

here temperatures are normalized to Fermi energy θe = kBTe/EF , θi = kBTi/EF . Coefficients C and β for
Cu used to plot the three dashed curves in Fig. 8 (left) are taken from paper.16 Expression ”5/4” underestimate

‡This is not true for transition metals, see next Section.
§Another reason is connected with a finite duration of a two-temperature stage.
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Figure 8. Left panel. Two continuous curves give a two-temperature heat conductivity of Cu according to model6 at
normal density ρ0 = 9 g/cc. The conductivities given by a still popular phenomenological expression ”5/4” are shown
by thee dashed lines for comparison. The expression ”5/4” is described in text. Two values connected with the dashed
lines are ion temperature Ti and Fermi energy in [eV]. Middle panel. Comparison of our model with DFT MD and
Kubo-Greenwood approach18 in case of two-temperature solid gold. Right panel. Comparison of our model with DFT
MD/Kubo-Greenwood approach in case of one-temperature Te = Ti = T (blue curves) and two-temperature Te > Ti = 3
kK (red curves) molten aluminum.19

conductivity at high temperatures Te since it overestimates frequency νee written as νee ∝ T 2
e according to low

temperature simple asymptote,20 see discussion of this circumstance in paper.21 Frequency νee in expression
”5/4” strongly exceeds e-i frequency at elevated values Te. Therefore the dependencies ”5/4” for different
temperatures Ti merge into one curve. At smaller electron temperatures the expression ”5/4” gives results
qualitatively similar to the results from our model.

Nowadays DFT simulations are used to define quantum transport properties of liquids and solids. Simple22

and transition metals23,24 are considered. Those papers report ab-initio results concerning only one-temperature
case. Recently first papers18,19,25,26 appear dealing with two-temperature liquids (Al) and solids (Au). In
these calculations a supercell of a few hundreds atoms is simulated by quantum molecular dynamics method
using usually approximation with only one k-point. Periodical boundary conditions are hold on the walls of a
supercell. Simulations starts from a configuration with atoms in lattice. Gradually during ionic displacements
the ionic temperature increases up to a predetermined value. After that temperature Ti becomes fixed. A set of
ionic configurations are accumulated during motion of atoms in supercell along a trajectory of many-body system.
After that every particular configuration in this set is used for DFT calculation of conductivities. Results for
every configuration are averaged around the set. Calculations of conductivities are based on Kubo-Greenwood
relation. Those calculations are more difficult in case of solid.

Comparisons of our results are shown in Fig. 8 (middle) for Au and in Fig. 8 (right) for aluminum. MD
DFT/Kubo-Greenwood results presented in Fig. 8 (middle) are obtained for system containing 32 atoms.18 A
mesh with 2 ∗ 2 ∗ 2 k-points is used. Density of gold is taken equal 19.32 g/cm3. DFT results for solid gold
Ti = 0.3 kK better agree with our calculations at elevated temperatures Te. At smaller values Te disagreement
is larger. DFT does not follow the local maximum of thermal conductivity.

In Fig. 8 (right) comparison in case of of aluminum is shown. Two examples are presented; density is 2.7 g
cm−3 for both examples. First of them corresponds to a one-temperature case: T = Te = Ti. While another
refers to a 2T case with fixed temperature Ti = 3 kK. Both examples are taken from paper.19 We see that our
results satisfactory agree with DFT in wide range of temperatures.

6. CONTRIBUTIONS TO ELECTRICAL AND THERMAL CONDUCTIVITIES DUE
TO ELECTRON-PHONON INTERACTION IN TWO-TEMPERATURE STATE

WITH ELEVATED ELECTRON TEMPERATURES

When considering the electron heat transfer coefficient κ, we must take into account the growth of electron-
electron interaction contribution in addition to the electron-ion scattering at high electron temperatures here
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considered. Now we consider how electron-phonon interaction contributes into the electron heat transfer coeffi-
cient at high electron temperatures.

We consider metals with s-, p- and d-electron energy bands excited by the laser irradiation. Electron spectra
in our approach is approximated by the parabolic expressions, different for s-, p-electrons (which we call simply
s-electrons) and d-electrons: ε(p) = εs + p2/2ms, if p ∈ s and ε(p′) = ε1 + p′2/2md, if p′ ∈ d. Electrons in
these bands have effective masses ms and md respectively. Parameters of the parabolic approach are chosen
in order to approximate the density of state calculations by the density functional method (DFT, see Section 2
above). Short version of our approach has been presented in paper.7 It does not include description of important
geometrical restrictions imposed on our integrals. Electron energy in s-band lies in the interval εs ≤ ε, while
in d-band it is restricted by the finite interval ε1 ≤ ε ≤ ε2. Electron s- and d-band Fermi functions have the
form fs(p) = [1 + e(ε(p)−µ)/kBTe ]−1, if p ∈ s and fd(p′) = [1 + e(ε(p

′)−µ)/kBTe ]−1, if p′ ∈ d with common
chemical potential µ(Te) and temperature Te . Phonon distribution function at ion temperature Ti has the
form N(q) = [e~ωq/kBTi − 1]−1 . Dependence of the phonon frequency ω on its quasimomentum q is chosen to
be ω(q) = sq(1− q/qD(2− 3ζ) + (q/qD)2(1− 2ζ)) with qD being the Debye momentum and ζ is responsible
for the deviation of spectra of acoustical phonons from linear form at large values of momenta.

6.1 s- and d-electron Scattering within the Relaxation Time Approach

The number of s-electrons escaping from the 3D element dp in unit time, can be written as27

Ṅs
− = Ṅs,s+ph

− + Ṅs,d+ph
− + Ṅs+ph,s

− + Ṅs+ph,d
− ,

where

Ṅs,s+ph
− = fs(p)

2dp
(2π~)3

∫
W ss(q)δ(ε− ε′)(1− fs(p′))(Nq + 1)

V dp′

(2π~)3
(7)

is the number of s-electrons with the energy ε escaping from the dp element per unit volume into another
states p′ within the same s-band with the energy ε′ because of the emission of phonons ( p→ p′+ q process),
V is a system volume. The rate

Ṅs,d+ph
− = fs(p)

2dp
(2π~)3

∫
W sd(q)δ(ε− ε′)(1− fs(p′))Nq

V dp′

(2π~)3
(8)

describes the number of s-electrons escaping from the dp element into states in d-band because of the phonon
emission. Correspondingly Ṅs+ph,s

− and Ṅs+ph,d
− denote numbers of s-electrons escaping from the dp element

into states in s- and d-bands because of the absorption of phonons ( p′ → p + q process). Delta-function in (7)
and (8) describes electron energy conservation and doesn’t include negligibly small phonon energy.

By the similar way we can write the number of s-electrons, incoming to the element dp in unit time

Ṅs
+ = Ṅs,s+ph

+ + Ṅs,d+ph
+ + Ṅs+ph,s

+ + Ṅs+ph,d
+

with

Ṅs,s+ph
+ = (1− fs(p))

2dp
(2π~)3

∫
W ss(q)δ(ε− ε′)(1− fs(p′))(Nq + 1)

V dp′

(2π~)3
(9)

and

Ṅs,d+ph
+ = (1− fs(p))

2dp
(2π~)3

∫
W sd(q)δ(ε− ε′)(1− fs(p′))(Nq + 1)

V dp′

(2π~)3
(10)

standing for the number of s-electrons, incoming to the element dp from s- and d- bands correspondingly because
of the emission of phonons. The terms Ṅs+ph,s

+ and Ṅs+ph,d
+ give the number of s-electrons incoming to the dp

element from s- and d-bands accordingly because of phonon absorption. Resulting rate of change of the number
of s-electrons in unit phase volume as a result of electron-phonon collisions is

Ṅs(p) = Ṅs
+ − Ṅs

− =
∫
p′∈s

W ss(q) · δ(ε− ε′) · [fs(p′)− fs(p)] · (2Nq + 1)
V dp′

(2π~)3
+
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+
∫
p′∈d

W sd(q) · δ(ε− ε′) · [fd(p′)− fs(p)] · (2Nq + 1)
V dp′

(2π~)3
.

On the other hand the rate of change of the number of s-electrons in unit phase volume is dfs/dt , so the kinetic
equation is obtained by the ordinary way

dfs
dt

=
∂fs
∂p
· eE = (fs)′ε

p
ms
· eE = Ṅs,

where ms is the effective mass of s-electrons and (fs)′ε = ∂fs/∂ε. By the similar way we obtain the rate of
change of the number of d-electrons in unit phase volume owing to the electron-phonon collisions

Ṅd(p′) =
∫
p∈d

W dd(q) · δ(ε− ε′) · [fd(p)− fd(p′)] · (2Nq + 1)
V dp

(2π~)3
+

+
∫
p∈s

W ds(q) · δ(ε− ε′) · [fs(p)− fd(p′)] · (2Nq + 1)
V dp

(2π~)3

and the kinetic equation for d-electrons

dfd
dt

=
∂fd
∂p′
· eE = (fd)′ε

p′

md
· eE = Ṅd,

Within the relaxation time approximation we have

df/dt = −(f − f0)/τ(p) = −f1(p)/τ(p) = (e/m∗)f ′ε pE.

Here we have f = f0 + f1, where f0 is the equilibrium distribution function in the absence of electric field and
f1 = (e/m∗)(−f ′ε) pE τ(p) is correction to it.

We introduce small corrections to the equilibrium distribution functions of s- and d-electrons

fs1 (p) = ηs(ε)pEτs(ε), fd1 (p′) = ηd(ε)p′Eτd(ε).

Then linearization of kinetic equations gives for s-electrons

−ηs(ε)pE =
∫
p′∈s

W ss(q)δ(ε− ε′) [ηs(ε)p′Eτs(ε)− ηs(ε)pEτs(ε)] (2Nq + 1)
V dp′

(2π~)3
+

+
∫
p′∈d

W sd(q)δ(ε− ε′) [ηd(ε)p′Eτd(ε)− ηs(ε)pEτs(ε)] (2Nq + 1)
V dp′

(2π~)3

But we have
p′E = p′E cosα′ = p′E(cosα cos θ + sinα sin θ cosφ),

where α is the angle between vectors p and E , α′ is the angle between vectors p′ and E , θ is the angle
between vectors p and p′ . After the integration over the angle φ between the planes (pp′) and (pE) we
obtain

p′E = p′E cosα cos θ =
p

p
pE cosα cos θ =

p′

p
pE cos θ.

Because of the energy conservation at s-s collisions we have p′ = p. Taking into account that q2 = p2+p′2+2pp′t,
dt = qdq/(pp′), and dp′ = 2πp′2dp′dt = 2π p′qdp′dq/p = 2πm∗qdε′dq/p, we have for s-electrons after canceling
the common factor pE

−ηs(ε) =
∫
p′∈s

W ss(q)δ(ε− ε′) [ηs(ε)cosθτs(ε)− ηs(ε)τs(ε)] (2Nq + 1)
V

(2π~)3
2πms

p
qdε′dq+
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+
∫
p′∈d

W sd(q)δ(ε− ε′)
[
ηd(ε)

p′

p
cos θτd(ε)− ηs(ε)τs(ε)

]
(2Nq + 1)

V

(2π~)3
2πmd

p
qdε′dq.

Integration over ε′ with taking into account δ -function gives

−ηs(ε) = ηs(ε)τs(ε)
∫
s

W ss(q)(cos θ − 1)(2Nq + 1)
V

(2π~)3
2πms

p
qdq+

+ηd(ε)τd(ε)
∫
d

W sd(q)
p′

p
cos θ(2Nq + 1)

V

(2π~)3
2πmd

p
qdq − ηs(ε)τs(ε)

∫
d

W sd(q)(2Nq + 1)
V

(2π~)3
2πmd

p
qdq.

We denote ∫
s

W ss(q)(1− cos θ)(2Nq + 1)
V

(2π~)3
2πms

p
qdq = Hss(ε),∫

d

W sd(q)
p′
p

cos θ(2Nq + 1)
V

(2π~)3
2πmd

p
qdq = Hsd(ε),∫

d

W sd(q)(2Nq + 1)
V

(2π~)3
2πmd

p
qdq = Gsd(ε).

Then the kinetic equation for s-electrons takes the form

ηs(Hss +Gsd)τs − ηdHsdτd = ηs. (11)

Analogously for d-electrons it can be obtained

−ηd(ε) = ηd(ε)τd(ε)
∫
d

W dd(q)(cos θ − 1)(2Nq + 1)
V

(2π~)3
2πmd

p′
qdq+

+ηs(ε)τs(ε)
∫
s

W ds(q)
p

p
cos θ(2Nq + 1)

V

(2π~)3
2πms

p′
qdq − ηd(ε)τd(ε)

∫
s

W ds(q)(2Nq + 1)
V

(2π~)3
2πms

p′
qdq

Denoting ∫
d

W dd(q)(1− cos θ)(2Nq + 1)
V

(2π~)3
2πmd

p′
qdq = Hdd(ε),∫

s

W ds(q)
p

p
cos θ(2Nq + 1)

V

(2π~)3
2πms

p′
qdq = Hds(ε),∫

s

W ds(q)(2Nq + 1)
V

(2π~)3
2πms

p′
qdq = Gds(ε)

we introduce the second equation for τs and τd :

ηsHdsτs − ηd(Hdd +Gds)τd = −ηd. (12)

From the system of equations (11) and (12) in the case when transition between s- and d- bands exists we find

τs(ε) =
ηd

ηs
Hsd +Hdd +Gds

(Hss +Gsd)(Hdd +Gds)−HsdHds
,

τd(ε) =
ηs

ηd
Hds +Hss +Gsd

(Hss +Gsd)(Hdd +Gds)−HsdHds
.

Taking into account that ηs/ηd = md/ms , we have

τs(ε) =
ms

md
Hsd +Hdd +Gds

(Hss +Gsd)(Hdd +Gds)−HsdHds
,

τd(ε) =
md

ms
Hds +Hss +Gsd

(Hss +Gsd)(Hdd +Gds)−HsdHds
.

In the case when s- electron has a momentum allowing only s→ s scattering, we have simply τs(ε) = 1/Hss.
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owing to the electron-phonon interaction. Right panel. (q-p)-region of integration for s→ d -process.

6.2 Regions of Integration in (q-p)-plane in Matrix Elements H and G

When calculating relaxation times τs and τd, integration over ε′ , deleting δ -function, is made. To make it
possible with the nonzero result, restrictions on the range of integration in (p, q) -plane arise.

When considering s → s -scattering, we have: p + q = p′ , q2 = p2 + p′2 − 2pp′. Here p stands for the
s-electron momentum before the collision, p′ is the s-electron momentum after the collision. We introduce
the angle θ between vectors p and p′ and also the variable t′ = −cosθ . Then q2 = p2 + p′2 + 2pp′t′ and
dt′ = qdq/(pp′). Volume element in p′ -space is equal to

dp′ = 2πp′2dp′
qdq

pp′
= 2π

q

p
p′dp′dq = 2π

q

p
msdε

′dq

( ε′ = εs + p′2/(2ms) is the energy of s-electron after the collision). At given q the momentum p′ has values
from p′min = |p− q| to p′max = p+ q . Presence of function δ(ε′ − ε) leads to conditions

εs +
(p− q)2

2ms
< εs +

p2

2ms
, εs +

(p+ q)2

2ms
> εs +

p2

2ms
.

First of these inequalities gives q < 2p. Together with the restriction q < qD it defines the range of integration
in (q, p) -plane, shown in Fig. 9 (left) by the hatched region.

Let’s consider s→ d scattering: p + q = p′, q2 = p2 + p′2 − 2pp′. Here p is the momentum of s-electron,
p′ is the momentum of d-electron. Now we introduce the angle θ between vectors p and p′ as well as a
variable t′ = −cosθ. Then q2 = p2 + p′2 + 2pp′t′ and dt′ = qdq/(pp′), so volume element in p′ -space can be
written as

dp′ = 2πp′2dp′
qdq

pp′
= 2π

q

p
p′dp′dq = 2π

q

p
mddε

′dq.

Here ε′ = ε1 + p′2/(2md) is the energy of d-electron. We introduce the boundary momentum of the electron in
d-band pd =

√
2md (ε2 − ε1). At given q the value p′ lies from p′min = |p−q| to p′max = p+q. In dependence

on positions of values p′min, p
′
max, pd different situations are possible.

Case sd-1. |p− q| < p+ q < pd

Energy of s-electron is ε = εs + p2/(2ms). Function δ(ε′ − ε) at given positions of characteristic points in
addition to inequality p+ q < pd creates restrictions in the form of inequalities

ε1 +
(p− q)2

2md
< εs +

p2

2ms
, ε1 +

(p+ q)2

2md
> εs +

p2

2ms
.
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A system of these three inequalities can be written as

(p− q)2 < 2md(ε− ε1), (p+ q)2 > 2md(ε− ε1), p+ q < pd.

When denoting p∗(ε) =
√

2md(ε− ε1) and adding to three inequalities above the restriction on phonon quasi-
momentum q < qD, we obtain a system of inequalities

p− p∗ < q < p+ p∗, q > p∗ − p, q < pd − p, q < qD.

Region of ( q, p ) variables, described by these inequalities, is shown in Fig. 9 (right) by the hatched region below
the line q = pd − p.

We introduce notations m0 =
√
md/ms and p1s =

√
2ms(ε1 − εs), p2s =

√
2ms(ε2 − εs). And we also

introduce a value of momentum of s-electron p̄ , at which p∗ − p = 0. We can find p̄ =
√

2m̄(ε1 − εs), where
1/m̄ = 1/ms − 1/md.

Points A,B,H,L shown in Fig. 9 (right) have p -coordinates: p(A) = p2s, p(B) = (
√

4 p2
d +m2

0(m2
0 − 4)p2

2s−
2pd)/(m2

0 − 4), p(H) = pd − qD, p(L) = (m0

√
q2d + (m2

0 − 1)p2
1s − qD)/(m2

0 − 1).

Analogously the range of integration in (q, p) -plane can be obtained in the case corresponding to the alter-
native case of relative positions of values p′min, p′max, and pd.

Case sd-2. |p− q| < pd < p+ q

It gives equivalently
p− pd < q < p+ pd, q > pd − p.

Because of energy δ -function the following two restrictions

ε1 +
(p− q)2

2md
< εs +

p2

2ms
, ε1 +

p2
d

2md
> εs +

p2

2ms
.

arise. With the use of introduced designations they can be written as (p − q)2 < p2
∗, p < p2s. As a result a

system of inequalities

p− pd < q < p+ pd, q > pd − p, p− p∗ < q < p+ p∗, p < p2s, q < qD

is obtained. The range defined by these inequalities (having triangular form) is also shown in Fig. 9 (right) by
the hatched region above the line q = pd − p.

Now we consider d → s scattering. Electron in d-band having the momentum p′ is scattered to s-band to
obtain the momentum p with the transferred momentum q = p′ − p. By introducing the angle θ between p′

and p and designation t′ = − cos θ, we have q2 = p2 + p′2 + 2p p′ t′, dt′ = qdq/(pp′). Now the integration over
the final states is the integration over the states p of s-electron. The volume element in p -space of final states
of electron after the scattering can be written as

dp = 2π p2 dp dt′ = 2π p2 dp
qdq

pp′
= 2π

pq

p′
dp dq = 2π

q

p′
ms dε dq.

At a given q the s-electron momentum changes from pmin = |p′ − q| up to pmax = p′ + q. In addition to
the inequality p′ < pd, because of the presence of δ -function, a system of inequalities

εs +
(p′ − q)2

2ms
< ε′, εs +

(p′ + q)2

2ms
> ε′

or
(p′ − q)2 < 2ms(ε− εs), (p′ + q)2 > 2ms(ε− εs), p′ < pd

arises. We denote p∗(ε′) =
√

2ms(ε′ − εs). Then the system of these inequalities can be written as

p′ − p′∗ < q < p′ + p′∗, q > p′∗ − p′, p′ < pd, q < qD.

Proc. of SPIE Vol. 9065  906503-14

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/10/2013 Terms of Use: http://spiedl.org/terms



p

q

p
D

q
D

p

L`

q=p`-p`*

q=p`*-p`

q=p`*+p`

p
1s

p`

q

q
D

q
D
/2

p
D

p
D

F` H`

Figure 10. The range of the q − p′ -plane for the integration of electron transport coefficients because of electron d→ s
and d → d transitions after the electron-phonon interaction. Left panel. Region for integration in the plane of q and
p′ variables to obtain electrical conductivity and electron heat conductivity due to the electron-phonon interaction when
d → s scattering takes place. Right panel. Part of q − p′ -plane for the integration designed to calculate d → d -
contribution.

The range of variables (q, p′) , defined by the system of these inequalities, is presented in Fig. 10 (left). Point
L ′ in Fig. 10 (left) has the coordinate p′ (L ′ ) = m0 (m0qD −

√
q2D + (m2

0 − 1)p2
1s)/(m

2
0 − 1).

It only remains to consider d → d scattering. d-electron with the momentum p′ is scattered to d-band,
taking on the momentum p′′ with the transferred value of momentum q = p′−p′′. When introducing the angle
θ between vectors p′ and p′′ and designation t = − cos θ , we obtain q2 = p′′2 +p′2 + 2 p′′ p′ t, dt = q dq/p′′ p′.
Now the integration over final states implies the integration over the states of d-electron p′′. We have

dp′′ = 2π p′′2 dp′′ dt = 2π
p′′ q

p′
dp′′ dq = 2π

q

p′
md dε

′′ dq.

At a given q the momentum of scattered electron in d-band is changed from p′′min = |p − q| to p′′max = p + q.
In dependence on interpositions of p′′min, p

′′
max, pd two cases can be considered:

Case dd-1. |p′ − q| < p′ + q < pd

δ -function leads to the system of inequalities, additional to the condition p′ < pd :

ε1 +
(p′ − q)2

2md
< ε1 +

p′2

2md
, ε1 +

(p′ + q)2

2md
> ε1 +

p′2

2md
,

whence it follows that
(q − p′)2 < p′2, (q + p′)2 > p′2.

As a result a system of inequalities arises:

q < 2p′, q < pd − p′, p′ < pd, q < qD.

The range in (q, p′) -plane, restricted by these inequalities, is shown in Fig. 10 (right) under the line q = pd−p′.
Characteristic points here have p′ -coordinates: p′(F ′) = qD/2, p′(H ′) = pd − qD.

Case dd-2. |p′ − q| < pd < p′ + q

Now we add to the inequality |p′−q| < pd < p′+q the inequalities arising due to the presence of δ -function:

ε1 +
(p′ − q)2

2md
< ε1 +

p′2

2md
, ε1 +

p2
d

2md
> ε1 +

p′2

2md
.
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Resulting system of inequalities has the form

q < 2p′, q > pd − p′, p′ < pd, q < qD, p′ − pd < q < p′ + pd.

Corresponding range of (q, p′) variables is also shown in Fig. 10 (right) as a triangle over the line q = pd − p′.
Now let’s consider matrix elements H and G . Taking into account that when s → s -scattering, the angle
between initial and scattered electrons θ satisfies the relation cos θ = 1− q2/(2p2), , when s→ d and d→ s -
scattering, cos θ = (p2 + p′2 − q2)/(2pp′), and finally, when d → d -scattering, cos θ = 1 − q2/(2p′2) , we can
write these matrix elements in the form

Hss(ε) =
∫
Z2
ssW (q)

q2

2p2
(2Nq + 1)

V

(2π~)3
2πms

p
qdq,

Hsd(ε) =
∫
Z2
sdW (q)

p′

p

p2 + p′2 − q2

2pp′
(2Nq + 1)

V

(2π~)3
2πmd

p
qdq,

Gsd(ε) =
∫
Z2
sdW (q)(2Nq + 1)

V

(2π~)3
2πmd

p
qdq,

Hdd(ε) =
∫
Z2
ddW (q)

q2

2p′2
(2Nq + 1)

V

(2π~)3
2πmd

p′
qdq,

Hds(ε) =
∫
Z2
dsW (q)

p

p′
p2 + p′2 − q2

2pp′
(2Nq + 1)

V

(2π~)3
2πms

p
qdq,

Gds(ε) =
∫
Z2
dsW (q)(2Nq + 1)

V

(2π~)3
2πms

p′
qdq. (13)

Here we have introduced a function

W (q) =
πq2

ρV ω

(
4πne2~2

q2ε(q)

)2

with n, ρ, ε(q) being correspondingly concentration of atoms, their mass density, and electron dielectric permit-
tivity to write for example W ss as W ss = Z2

ssW (q) and analogously write another transition probabilities.
Zss, Zsd, Zds, Zdd are effective charges for corresponding scattering process. Matrix elements H and G are
defined by the energy of electron, which is held constant after the scattering because of the quasielastic character
of electron-phonon interaction. So that if the change between s- and d-bands takes place, we have

ε = εs +
p2

2ms
= ε1 +

p′2

2md

In this case the momentum of electron in d-band p is a single-valued function of the momentum p of electron
in s-band. We shall use the momentum of electron in s-band. When we use designations introduced by

p′ = m0

√
p2 − p2

1s, (14)

and it exists only at p ≥ p1s. For smaller values of momentum the s-electron can be scattered only to s-band.
Electron transfer from s- no d-band begins only when s-electron momentum satisfies inequality p ≥ p1s. As
a result, when taking the momentum of s- electron as a parameter, we obtain for different intervals of p the
following limits of integration over q on calculating the matrix elements H and G :

1)0 < p < qD

2∫ 2p

0
dq[ss]

2) qD

2 < p < p1s
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∫ qD

0
dq[ss]

3)p1s < p < pL (pL = p(p′(L′))∫ qD

0
dq[ss] +

∫ p+p∗
p−p∗ dq[sd] +

∫ p′+p′∗
p′∗−p′

dq[ds] +
∫ 2p′

0
dq[dd]

4)pL < p < p(p′(F ′))∫ qD

0
dq[ss] +

∫ qD

p−p∗ dq[sd] +
∫ qD

p′∗−p′
dq[ds] +

∫ 2p′

0
dq[dd]

5)p(p′(F ′)) < p < p̄∫ qD

0
dq[ss] +

∫ qD

p−p∗ dq[sd] +
∫ qD

p′∗−p′
dq[ds] +

∫ qD

0
dq[dd]

6)p̄ < p < p2s∫ qD

0
dq[ss] +

∫ qD

p∗−p dq[sd] +
∫ qD

p′−p′∗
dq[ds] +

∫ qD

0
dq[dd]

7)p > p2s∫ qD

0
dq[ss]

Here symbols [ss], [sd], [ds], [dd] stand for the type of a scattering for the matrix elements H and G, which
defines their value in accordance with equations (13).

6.3 Electrical Conductivity and Electron Heat Conductivity Owing to Interaction of s-
and d-electrons with Phonons

Relaxation times obtained as functions of electron momentum being substituted into the expressions for the elec-
trical conductivity of s - and d -electrons, deduced from kinetic equations within the relaxation time approach,
give a resistivity and effective frequencies of electron-phonon collisions in dependence of electron temperature.

Current density in the electric field direction being in line with the z -axis, can be written as

jz = e

∫
f1(p)vz2

d3p

(2π~)3
= e2

∫ (
−∂f0
∂ε

)
vEτ(p)vz

d3p

(2π~)3
=

= e2
∫ (
−∂f0
∂ε

)
τ(p)v2

z2
d3p

(2π~)3
Ez = e2

∫
p

∫ π

0

(
−∂f0
∂ε

)
p2

m∗2
cos2 θ τ(p) 2

2π p2 dp d(− cos θ)
(2π~)3

Ez.

Thus electrical conductivity is equal to

σ =
2
3

( e

m∗

)2 4π
(2π~)3

∫
p

(
−∂f0
∂ε

)
τ(p)

p4dp

(2π~)3

Electrical conductivity due to the s-electrons then equals to

σs =
2
3

(
e

ms

)2 4π
(2π~)3

∫
p

(
−∂f0s

∂ε

)
τs(p)

p4dp

(2π~)3
, with − ∂f0s

∂ε
=

exp[(ε− µ)/kTe]/kTe
exp[(ε− µ)/kTe] + 1

and ε = εs+
p2

2ms
.

Accordingly electrical conductivity through d-electrons can be written as

σd =
2
3

(
e

md

)2 4π
(2π~)3

∫ ′
p

(
−∂f0d
∂ε′

)
τd(p′)

p′4dp′

(2π~)3
, where − ∂f0d

∂ε′
=

exp[(ε′ − µ)/kTe]/kTe
exp[(ε′ − µ)/kTe] + 1

.
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Figure 11. Resistivity σ of noble (Au) and transition metals (Fe, Ni) as functions of electron temperature Te. Left panel.
Comparison of functions σAu(Te) and σFe(Te) at two fixed ion temperatures Ti =0.3 kK and 1.2 kK. Right panel. Nickel
versus gold, qualitatively different behavior of resistivity.

In the integral for σd the electron energy is ε′ = ε1 + p′2/(2md), and it is convenient to change from the
integration over p′ to the integration over momentum of s-electron p with the help of relation (14). Then
p′dp′ = m2

0pdp, ε
′ = ε = εs + p2

2ms
, and the range of integration over p is divided onto seven intervals shown

above, only four of which contain momentum values, necessary to make it possible the scattering of d-electrons
because of the quasielasticity of electron-phonon collisions.

By using calculated s- and d-electron conductivities, we can define effective frequencies of collisions of s- and
d-electrons with phonons in dependence on two temperatures as those to give the same values of conductivities
as obtained by the Drude formula:

ν̄s =
Zs(Te)ne2

msσs
, ν̄d =

Zd(Te)ne2

mdσd
.

Here n is the concentration of atoms and Zs and Zd are the numbers of electrons per atom in s- and d-bands
depending on electron temperature.

Relaxation times, calculated as the functions of electron momentum, also allow to calculate the electron heat
conductivity coefficient. In the presence of electron temperature gradient deviation of the electron distribution
function from its equilibrium value can be written in the form20,28

f1 = −v
∂f0
∂Te

τ(ε)∇Te =
(
−∂f0
∂ε

)(
∂µ

∂Te
+
ε− µ
∂Te

)
vτ(ε)∇Te

The density of electron heat flux at the temperature gradient directed along the z -axis is calculated as

q =
∫

(ε− µ)vzf12
d3p

(2π~)3
=
∫ (
−∂f0
∂ε

)(
∂µ

∂Te
+
ε− µ
∂Te

)
(ε− µ)v2

zτ(ε)2
d3p

(2π~)3
∂Te
∂z

Whence electron heat conductivity coefficient is

κ =
1
3

∫ (
−∂f0
∂ε

)(
∂µ

∂Te
+
ε− µ
∂Te

)
(ε− µ)v2τ(ε)2

8πp2dp

(2π~)3

Electron heat conductivity coefficient due to the electron-phonon interaction is a sum of partial s-electron heat
conductivity coefficient κs and d-electron heat conductivity coefficient κd : κ = κs + κd, as well as total
electrical conductivity σ = σs + σd.

Resistivity as a function of the electron temperature at two values of ion temperatures Ti = 0.3 kK and
Ti = 1.2 kK is shown in Fig. 11 for the noble metal (gold) and two transition metals (iron and nickel). We see
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relatively small dependence of the resistivity of gold upon the electron temperature, while for transition metals
the resistivity significantly drops with increase of electron temperature. Resistivity of nickel, having a Fermi
level close to the upper edge of the electron d-band, drops faster than resistivity of iron with Fermi level lying
more deeper inside the d-band.
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